If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-3q^2-2q+1=0
a = -3; b = -2; c = +1;
Δ = b2-4ac
Δ = -22-4·(-3)·1
Δ = 16
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$q_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$q_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{16}=4$$q_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-2)-4}{2*-3}=\frac{-2}{-6} =1/3 $$q_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-2)+4}{2*-3}=\frac{6}{-6} =-1 $
| 4(4x+10)=50+2x | | 11x-27=6x-2 | | n=4-11 | | 5*(31.25)+3y=114 | | 3/t^2=6/t^2+8t | | 19-2(3x-5)=15 | | 4-12=+32+t | | 7−5+3x−1=x4+8 | | 7−5+3x−1=3+7 | | 0.4(2x+0.3)=1/3(6x-7.2) | | 5x-17+Y=48 | | 7−5+3x−1=7+3 | | -3.5*z=2.31 | | 7−5+3x−1=7-5+3x-1=7+5 | | 6z-7=2z | | 15x-60=400 | | 7−5+3x−1=7-5+3x-1=x+x | | 1/5x+14=2/9 | | -6m=2(3m+-1) | | 25x+200=350 | | 5(x+10=5x+50 | | 3x-6=2×+12 | | 6x+10=-5x-19 | | 0,6(40-y)-0.2y=10 | | 66.50=21x | | x+2+3x-14+2x+8=180 | | -1x+8=7x+-5 | | 3b/7=9 | | 4g-15=4g+11 | | 11x-3/x=3 | | 24+0,4y=10 | | 5x+6=4.50 |